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Abstract.

We develop an efficient information-theoretic estimator for analyzing interval-valued, and symbolic, data.

Rather than applying the traditional least squares or likelihood methods to estimate some moments of

the intervals (as often done), we use the complete information in the sample and identify the best

model and related parameters that are consistent with the data generating process. It is an iterative

approach. Our information-theoretic estimator imposes minimal statistical assumptions on the underly-

ing distribution. We provide a large number of sampling experiments as well as a few empirical examples.
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1. INTRODUCTION

Imagine the case where all of the observed information is in terms of intervals over some ranges.

Examples include regression models where some set of known variables X has a causal effect on the

observed dependent variable y and both the y’s and the X’s are observed as intervals. These types of

data are very common across many disciplines. Examples include financial and weather data, histograms

and more. The main issue for the researcher, or for the policy analyst, is how to identify the correct

underlying structure of the model generating these interval data, and then, how policy implications

or forecasting can be made. These types of problems are tough to analyze even for a large data set.

A main difficulty is in separating the noise from the signal in the observed interval information such

that the correct model (or class of models) is identified. Stated differently, facing interval data, a

major concern is figuring out whether each point in the interval is generated via the same underlying

process, and whether the impact of each point, within the interval of the independent variable, on the

dependent variable is the same. Is there a single underlying process and if so what is it? If it is not

a single process, can we identify the most probable processes? In this paper we develop an iterative

Information-Theoretic (IT) method for simultaneously identifying the most appropriate model (out of a

class of possible models) and for estimating its parameters for interval data problems. This is a flexible

and efficient approach that imposes minimal assumptions on the underlying statistical process. Our

proposed approach works well for small, large or ill-behaved data.

Generally speaking, the invention of high-performance computers together with the emergence of big

data due to sophisticated data collection technologies necessitate researchers to think about processing,

storing, and analyzing information that is often observed in terms of intervals, histograms or other types

of symbolic style data. This led to much interest in the study of these types of data with significant

innovations in the last several decades. However, though there is an increasing body of research that

concentrates on estimation and inference of these types of data, most of the symbolic data research

concentrates on computational statistics and data mining techniques. Our method falls within the

former.

One of the more frequently studied symbolic type data is interval-valued data. In such data, instead

of observing a single value for an observation, each observation is in terms of some interval (Billard and

Diday, 2012). Much of the observed interval-valued data is due to aggregation of the original detailed

data. Examples include intraday stock prices and returns which are routinely aggregated to obtain

daily interval within the minimal and upper daily prices. Similarly, daily closing prices of stocks can be

aggregated to form an interval with bounds of the lowest and highest weekly prices. At times, however,

the observed intervals may be simply due to the intrinsic nature of the observable information. For

example, an individual’s blood pressure is measured as an interval of systolic and diastolic pressures.

Other examples include risk analysis or weather prediction (e.g., high-frequency financial data, weekly
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oil prices, and temperature patterns) where intervals are the natural state of each observation. Other

examples of symbolic data include histogram-valued data and modal-valued data. We concentrate here

on interval data.

Generally speaking, the classical regression methods fail to account for the internal variations within

an observation. However, most existing interval-valued data estimation methods build on the more

traditional methods for inferring separately the lower and upper bounds of the interval, or for inferring

(separately) the center and ranges of the intervals. Then, these independent estimates are combined

in a suitable way for prediction. Though these methods work well under some conditions, in practice

these conditions don’t hold. These conditions include the assumption that there is a unique relationship

between the independent and dependent intervals across all points within the interval, and that the

bounds of the intervals are perfectly known. Further, it is also often assumed that recovering the

moments of the intervals is sufficient for uncovering the possibly more complex relationship among the

intervals. Billard and Diday (2000) developed one of the first models to extend the classical method

to deal with interval-valued data. Their innovation was to fit a regression line through the center

points of the observations and use the estimated parameters, along with the lower and upper bounds

of the explanatory variables, to predict the lower and upper bounds of the response variable. Though

rather innovative, their model ignores the internal variations of observations as well as the ranges of

the intervals. To resolve this issue, Lima Neto et. al. (2004, 2008) proposed running two separate

regression models for the center points and ranges of the intervals and then, predict the centers and

ranges, respectively. In line with that approach, Billard and Diday (2002) proposed fitting two separate

regressions of the (minimum and maximum of) the intervals. A major drawback of these approaches

is that the predicted lower bound of the response variable can be larger than the predicted upper

bound. This is particularly true if the estimated coefficients are negative. Lima Neto and de Carvalho

(2010) suggested imposing an extra constraint (that, unfortunately, may be inconsistent with the data

generating process) that forces the estimated coefficients to be non-negative and guarantees an artificial

“consistent” predicted lower and upper bounds.

Instead of transforming symbolic data to a classical data in order to use the classical estimator, Xu

(2010) and Xu and Billard (2012) recently developed a “symbolic variation” least squares estimator

using symbolic sample variance and covariance functions developed by Bertrand and Goupil (2000) and

Billard (2007, 2008). In addition to the above least squares estimators, a maximum likelihood estimator

(MLE) using a symbolic likelihood function was introduced by Le-Rademacher and Billard (2011), Xu

(2010) and Xu and Billard (2012).

The information used for the inference in all of these studies consists solely of the first few moments

of the intervals or on the minimally and maximally observed values. This means that not all of the

observed information is used, leading to a decrease in efficiency and accuracy. Further, these methods
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typically require (and assume) uniform or other distribution of points within the interval bounds.

These are tough assumptions that, most often, cannot be verified. Instead of innovating on the above

approaches we take a different route here. First, we relax these distributional assumptions on the

within-interval behavior. Second, we use all of the observed information in the sample. But these two

relaxations mean that the underlying problem is under-determined; there are infinitely many models

that are consistent with the observed intervals. Therefore, we use all of the observed information,

within an optimization framework, to identify the most probable (causal) model (or set of models) that

is consistent with our observations. The most probable model is identified by an entropy measure.

The method we develop is an iterative Information-Theoretic, Generalized Maximum Entropy (GME)

estimator (see Golan et. al.,1996). The estimation part (GME) has its roots in the intersection of

information theory and statistical inference. It uses Shannon’s entropy measure (Shannon, 1948) in

conjunction with the principle of Maximum Entropy (Jaynes, 1957). It is easy to implement and

program. Our proposed iterative process is as follows. First, we divide the observed interval-valued

data (for each variable) into a number of mutually exhaustive, equally-spaced discrete sub-intervals.

Second, we use a GME regression model to estimate the parameters of each one of the possible models

(all possible combinations among the independent and the dependent sub-intervals). Third, using these

inferred results we use our entropy measure to distinguish the “correct” (or best) model from the rest.

Thus, our method identifies the best model and simultaneously infers the model’s parameters. We use

our estimates to predict the distribution of the response variable. This allows us to estimate and predict

the full interval (distribution) of the response variable rather than just the lower and upper bounds (or

means) as are captured via the other approaches.

Section 2 briefly discusses the interval-valued data and briefly summarizes some of the commonly used

regression methods for analyzing these data. Section 3 provides the details of our iterative framework

and discusses our Information-Theoretic method. In section 4 we present results from a large number

of sampling experiments. In these experiments we contrast our method with its competitors. We also

extend our proposed iterative framework to include other traditional estimators (instead of the GME)

and compare with our method. In section 5 we provide two empirical examples. We conclude in Section

6.

2. CURRENT METHODS

This section briefly summarizes the nature of interval-valued data and discusses some of the existing

(linear) estimation methods, including the Center Method (CM), the Center and Range Method (CRM),

the Bivariate Center and Range Method (BCRM), the Symbolic Covariance Method (SCM), and others.

Following on Bertrand and Goupil’s (2000), suppose we observe a sample of N entities (i = 1, ..., N)

of a random variable X. For each observation i, there is an interval data point [X]i ≡ [XL
i , X

U
i ] and
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XL
i ≤ XU

i . Further, it is also assumed that values in the given interval (XL
i ≤ x ≤ XU

i ) are uniformly

distributed within the interval while each observation have the same probability 1
N of being observed.

Then, the empirical density function fX(x) is a combination of N uniform distributions:

f̂X(x) =
1

N

∑
i:x∈[x]i

I(x ∈ [x]i)

‖ [x]i ‖
=

1

N

∑
i:x∈[x]i

1

xUi − xLi
, x ∈ < (1)

where I(x ∈ [x]i) is the indicator function of whether x is inside (or not inside) the interval [x]i and

‖ [x]i ‖ is the length of that interval.

Based on the empirical density function (1), the sample mean and sample variance are:

Ê(X) = X̄ =

∫ ∞
−∞

xf(x)dx =
1

N

∑
i:x∈[x]i

1

xUi − xLi

∫ xUi

xLi

xdx

=
1

2N

∑
i

(xUi + xLi ) =
1

N

∑
i

xCi

(2)

where xCi is the center point of the interval [x]i, and

S2
X =

∫ ∞
−∞

(x− X̄)2f(x)dx =

(∫ ∞
−∞

x2f(x)dx

)
− X̄2

=
1

3N

∑
i

(xUi
2

+ xUi x
L
i + xLi

2
)− 1

4N2

[∑
i

(xUi + xLi )

]2 (3)

Based on the above formulas, Arroyo, Gonzalez-Rivera, and Mate (2010) noted that the sample mean

of an interval random variable is the mean of all the center points in the sample. The sample variance

captures not only the variations of the centers across observations, but also the variations within the

interval. Naturally, when XL
i = XU

i , the interval data collapses to the classical single-valued data.

Finally, Billard (2007,2008) introduced a “symbolic” covariance function for analyzing “symbolic”

regression analysis, while, Le-Rademacher and Billard (2011), Xu (2010) and Xu and Billard (2012)

developed a “symbolic” likelihood function for interval-valued data.

We now summarize, very briefly, some of the currently used methods. Xu (2010) and Ahn et.

al. (2012) discuss more in details about these existing methods. Following Ahn et. al. (2012)’s

notations, let X1, ..., XK be K explanatory variables and Y be the response variable. Assumes that

Xik = [XL
ik, X

U
ik] with XL

ik ≤ XU
ik and Yi = [Y L

i , Y
U
i ] with Y L

i ≤ Y U
i , for i = 1, ..., N and k = 1, ...,K.

Consider the following linear regression model:

Y = Xβ + ε (4)
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where Y = (Y1, ..., YN )′,X = (X1, ..., XN )′, Xi = (1, Xi1, ..., XiK)′ for i = 1, ..., N, β = (β0, β1, ..., βK)′, ε =

(ε1, ..., εN )′, εi ∼ N(0, σ2), and “′” stands for “transpose”.

Billard and Diday (2000) proposed the center method (CM), which is one of the first major works

in analyzing interval-valued data. The CM simply fits a linear regression line to the center points of

the intervals. Let Xc
1, ..., X

c
K be the center points of the intervals of explanatory variables X1, ..., XK

and Y c be the center point of a response variable Y . The CM essentially transforms the interval linear

regression model of (4) into the following center-points model:

Yc = Xcβc + εc (5)

where Y c = (Y c
1 , ..., Y

c
N )′, Xc = (Xc

1, ..., X
c
N )′, Xc

i = (1, Xc
i1, ..., X

c
iK)′ for i = 1, ..., N, βc = (βc0, β

c
1, ..., β

c
K)′,

and εc = (εc1, ..., ε
c
N )′.

The estimator β̂c is estimated via the usual least squares method:

min
β̂c

=
∑
i

ε̂ci
2

=
∑
i

(Y c
i − β̂c

′
Xc
i )

2 & β̂c = (Xc′Xc)−1Xc′Yc (6)

and standard statistical properties are readily adopted assuming the standard distributional assump-

tions on the error-term. Prediction of Ŷ = [Ŷ L, Ŷ U ] is given as:

Ŷ m = xm0 β̂
c, m = L,U (7)

for a new observation (xL0 , x
U
0 ). Xu (2010) and Xu and Billard (2012) point out that a lower bound

predicted response variable can be higher than an upper bound, and suggest the modified prediction is

presented as:

Ŷ L = min(xL0 β̂
c, xU0 β̂

c) & Ŷ U = max(xL0 β̂
c, xU0 β̂

c). (8)

Although the CM uses the ranges of predictors for prediction of the lower and upper bounds, such

bounds are ignored in estimating the parameters. That is, the variations within observations are not

utilized.

In an attempt to capture the internal variations as well as variations across observations, Lima Neto

et. al. (2004, 2008) propose the center and range method (CRM) that transforms the interval-valued

data to single point centers and ranges of the interval variables and then regressing the center points

and ranges separately. First, the CRM keeps the same model as in (5) for the center points. Then,

obtain the ranges, Xr
ik = (XU

ik−XL
k ) and Y r

i = (Y U
i −Y L

i ), using similar model. Let Xr
1 , ..., X

r
K be the

K ranges of the intervals of X1, ..., XK and Y r be the range of Y and is given by the following:

Yr = Xrβr + εr (9)
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where Y r = (Y r
1 , ..., Y

r
N )′, Xr = (Xr

1 , ..., X
r
N )′, Xr

i = (1, Xr
i1, ..., X

r
iK)′ for i = 1, ..., N, βr = (βr0, β

r
1, ..., β

r
K)′,

and εr = (εr1, ..., ε
r
N )′. Both β̂c and β̂r are estimated by minimizing the following objective function:

min
β̂c,β̂r

=
∑
i

(ε̂ci
2

+ ε̂ri
2
). (10)

They essentially perform two separate minimizations, one for the centers and another of the ranges,

assuming that mid-points and ranges are independent. However, Ahn et. al. (2012) asserts that such

assumption may not be true in general. Although CRM captures the interval variations through the

ranges, Ahn et. al. (2012) also point out that it is not clear how these variations are transferred to the

estimated coefficients. Prediction of Ŷ = [ŶL, ŶU ] is given as

Ŷ L = Ŷ c − Ŷ r

2
& Ŷ U = Ŷ c +

Ŷ r

2
(11)

where Ŷ c and Ŷ r are predicted values from (5) and (9).

Similar to CRM, Billard and Diday (2007) proposes a bivariate center and range method (BCRM)

which essentially utilized both the centers and ranges as predictors in the models, simultaneously. The

center and range models can be presented as follows:

Yc = Xcrβc + εc & Yr = Xcrβr + εr (12)

where Xcr = (Xcr
1 , ..., X

cr
N )′, Xcr

i = (1, Xc
i1, ..., X

c
iK , X

r
i1, ..., X

r
iK)′ for i = 1, ..., N . Potential problems

arise in when all the explanatory intervals and response variables have the same centers and ranges. In

this case, the previous methods will not work.

In addition to the previous approaches that utilize the classical regression estimators, Xu (2010) and

Xu and Billard (2012) proposed a symbolic covariance method (SCM) using the “symbolic” covariance

function introduced previously by Billard (2007,2008). Their model is

Y − Ȳ = (X− X̄)β + ε (13)

where β̂ = {(X− X̄)′(X− X̄)}−1(X− X̄)′(Y− Ȳ) = S−1XXSXY , SXX is the symbolic sample variance-

covariance matrix of the predictors and SXY is the vector of the symbolic sample covariance between Y

and the predictors. As in Billard (2007,2008), the symbolic sample covariance between interval-valued

variables Xj and Xk is defined as

Cov(Xj , Xk) = (6N)−1
N∑
i=1

[2(XL
ij − X̄j)(X

L
ik − X̄k) + (XL

ij − X̄j)(X
U
ik − X̄k)

+(XU
ij − X̄j)(X

L
ik − X̄k) + 2(XU

ij − X̄j)(X
U
ik − X̄k)]

(14)

where the symbolic sample mean is defined as in Bertrand and Goupil (2000).
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Recently, Ahn et. al. (2012) proposed a Monte-Carlo method (MCM) that (i) generate a large

number of samples by randomly selecting, uniformly, a single-valued data point for each observed

intervals, (ii) fit a classical linear regression model on each single-valued sample, (iii) calculate the

mean estimated coefficients over the fitted models. Then, use this mean of estimated coefficients to

predict the response variable.

Using interval-valued data is gaining some tractions in economics and econometrics. Examples in-

clude forecasting stock prices and returns with interval and histogram-valued times series data (Arroyo,

Gonzalez-Rivera, and Mate (2010), Arroyo and Gonzalez-Rivera (2012), and Arroyo, Gonzalez-Rivera,

Mate, and San Roque (2011)). Other examples include the work of Hea et. al. (2011) on forecasting

interval-valued crude oil prices with autoregressive conditional interval models, as well as the work of

Manski and Tamer (2003), and Magnac and Maurin (2007, 2008) on interval data to deal with partial

identification issues.

3. AN ITERATIVE INFORMATION-THEORETIC FRAMEWORK FOR INTERVAL

ESTIMATION

In this section, we develop an iterative Information-Theoretic Method for estimating interval-valued

data. Our method is an iterative version of the Generalized Maximum Entropy (GME) estimator

(Golan et. al., 1996). First, we develop our iterative framework. Then, we briefly summarize GME

estimator for the linear regression.

3.1. The Iterative Framework

The proposed iterative framework is simple and easy to implement. First, we relax distributional

assumptions on the within-interval behavior. Second, we divide both interval-valued response and

explanatory variables into a number of mutually exhaustive, equally-spaced sub-intervals and use these

observed information in the sample by iteratively fitting a GME regression model through all possible

combinations of the observed sub-intervals. Using the estimated entropy measure, we identify the most

probable (causal) model (or set of models) that is consistent with our observations. The most probable

model is a model with the largest estimated entropy measure.

To introduce the idea, consider first the simplest case. Suppose that there is only one explanatory

variable Xi = [XL
i , X

U
i ] and one response variable Yi = [Y L

i , Y
U
i ]. We can divide Xi and Yi into

M − 1 sub-intervals of equal size to get Xm
i = [X1

i , X
2
i , ..., X

M
i ] and Y m

i = [Y 1
i , Y

2
i , ..., Y

M
i ]. M

represents the endpoints of sub-intervals for each Xi and Yi, or we can view it for now as M observed

points for each observation (Xi,Yi). For example, for observation i = 1 and M = 5 sub-intervals

with one interval-valued regressor Xi, observing X1 ≡ [X1
1 , X

2
1 , X

3
1 , X

4
1 , X

5
1 ] = [2, 4, 6, 8, 10] and Y1 ≡

[Y 1
1 , Y

2
1 , Y

3
1 , Y

4
1 , Y

5
1 ] = [6, 10, 14, 18, 22] would correspond to Y m

i = 2 + 2Xm
i . For K = 2 with the
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underlying model Y m
i = 2 + 2Xm

i1 − 3Xm
i2 , we observe X11 ≡ [X1

11, X
2
11, X

3
11, X

4
11, X

5
11] = [2, 4, 6, 8, 10],

X12 ≡ [X1
12, X

2
12, X

3
12, X

4
12, X

5
12] = [3, 5, 7, 9, 11] and Y1 ≡ [Y 1

1 , Y
2
1 , Y

3
1 , Y

4
1 , Y

5
1 ] = [−3,−5,−7,−9,−11].

The two examples assume that each sub-interval m(= m1,m2) of X causes linearly the mth sub-interval

of Y and the impacts are the same across different points within the intervals.

But now, to be more realistic, assume we know that X causes Y linearly but we do not know the

correct model. We do not know if each point within the interval of X affects Y in the same way. Maybe,

for example, points on the lower part of X affect Y in a different way than points around the mean

or the upper portion of the interval. More precisely, we do not know which combination of intervals

(or points) m(= m1,m2, ...,mK) of K explanatory variables Xi correspond to which interval (or point)

m of Y m
i , where mk is an interval (or point) of Xik and can takes the value of mk = 1, ...,M . Given

this complex setting, we want to infer the relationship between each one of the X sub-interval and

the Y sub-interval. To do so with minimal assumptions on the underlying distribution, we apply the

GME for all possible combination of sub-intervals within the interval-valued random variables X and Y.

[Insert Figure 1 here]

Consider, for example, M = 5 and K = 1 as shown in Figure 1. Then, using M ×MK combinations

of pairs such as (X1
1 , Y

1), (X1
1 , Y

2),...,(X1
1 , Y

5), (X2
1 , Y

1), (X2
1 , Y

2),...,(X5
1 , Y

5), we obtain 25 sets of

estimated coefficients via a linear GME estimator, while K = 2 produces 125 sets of estimated coeffi-

cients. Iteratively fitting the linear GME model for the above combination assumes that the ordering

of sub-intervals within Y m
i is known or does not matter for the analysis. There could be cases in which

more complicated orderings or permutations could be required.

Using these estimated regression coefficients together with the empirical distribution of total entropy

values for each one of the models, we are able to distinguish the best model. It is the one with the largest

entropy. Thus, we not only identifies the best model but also obtain the inferred model’s parameters.

Generally speaking, the choice for M is an empirical issue. Since the number of iterations required

for our iteration approach increases multiplitively with M and the number of regressors, K, one wants

relatively low M . It mainly depends on the trade-off between the amount of variations obtained by

increasing M and the increase in iterations required. In here, we use M = 5 for both experiment and

empirical sections.

3.2. An Information-Theoretic Estimator - A Brief Summary

Consider the linear regression model with N observations and K explanatory variables:

Y = Xβ + ε (15)
9



where Y is a N -dimensional vector of observed random variable, X is a N ×K matrix of regressors,

Xik = [XL
ik, X

U
ik] with XL

ik = XU
ik is degenerated to a point value (instead of interval as in (4)), β is

K-dimensional vector of the unknown coefficients, and ε is a N -dimensional vector of unobserved and

unobservable random errors. Golan et. el. (1996) proposed an Information-Theoretic (IT) estimator,

which is a member of the IT class of estimators (eg., Golan 2008, Judge and Mittelhammer 2011). This

estimator, called GME, uses minimal distributional assumptions and proved to perform well, relative

to other methods, especially for small, ill-behaved and other complex data. Rather than treating the

unknown quantities as point estimates, under the GME the complete probability distribution of each

unknown quantity is estimated. They reformulated β and ε such that

Yi =
∑
k

∑
s

zkspksxik +
∑
j

vjwij (16)

where z and v are the support spaces for the signal β and error ε respectively, pk is an S-dimensional

normalized probability distribution for each βk, and w is a normalized probability distribution for each

εi. The support zk may be different for each βk while v is symmetric around zero and similar for all

εN . Unless more information is known, each zk should be specified to be symmetric about zero. For

example, for S = 3, zk = (−C, 0, C) for some large C. The bounds for the v’s are +/- 3σy, where σy

is the sample standard deviation. See Golan, et. al. (1996) or Golan (2008) for further discussions and

examples.

Having reparameterized the model, it is clear that the number of unknown p’s and w’s exceeds

the number of observable information. The problem is under-determined. To solve it, we follow on

the classical Maximum Entropy (ME) formalism (Jaynes 1957). Let H(p) and H(w) be Shannon’s

entropies for p and w, respectively, then the generalized GME is just

max
{p,w}

H(p,w) = H(p) +H(w) ≡ −
∑
k

∑
s

pkslog(pks)−
∑
i

∑
j

wijlog(wij)

 (17)

subject to

Yi =
∑
k

∑
s

zkspksxik +
∑
j

vjwij

∑
s

pks = 1

∑
j

wij = 1

(18)

where the second set of constraints are the normalization of both p and w. Forming the Lagrangian

and solving yields the estimated probabilities for β

p̂ks =
exp(−zks

∑
i λ̂ixik)∑

s exp(−zks
∑

i λ̂ixik)
≡
exp(−zks

∑
i λ̂ixik)

Ωk(λ̂i)
,

10



and the estimated probabilities for ε

ŵij =
exp(−λ̂ivj)∑
j exp(−λ̂ivj)

≡ exp(−λ̂ivj)
Ψi(λ̂i)

where λ are the Lagrange multipliers associated with (18). The estimated values of β and ε are

β̂k ≡
∑
s

zksp̂ks (19)

ε̂i ≡
∑
j

vjŵij ,

where Ωk(λ̂i) =
∑

s exp(−zks
∑

i λ̂ixik) and Ψi(λ̂i) =
∑

j exp(−λ̂ivj) are the partition functions (also

known as the normalization functions).

The concentrated (unconstrained/dual) GME model is:

max
p∈P,w∈W

H(P,W ) = min
λ∈D

{∑
i

Yiλi +
∑
k

logΩk(λi) +
∑
i

logΨi(λi)

}

= min
λ∈D

∑
i

Yiλi +
∑
k

log

[∑
s

exp(−zks
∑
i

λixik)

]
+
∑
i

log

∑
j

exp(−λivj)

 .

(20)

Solving for λ’s provide the estimated p’s and w’s which in turn provide β̂ and ε̂. For more details,

examples, theoretical and empirical applications, as well as different support structures see Golan

(2008).

3.3. Inference and Diagnostics

Under the GME approach, we maximize the joint entropies of the signal and the noise. Keeping

in mind that the estimated errors are minimized when the entropy of the noise, H(w), is maximized

and the estimated probability distributions of each βk are pushed to uniformity within its pre-specified

support zk, the natural statistic used for identifying the best possible (or “correct”) model is the value

of the objective function (17), or similarly (20). Note that, similar to the maximum likelihood and

empirical likelihood approaches, the objective function provides also the foundations for the traditional

entropy-ratio statistics and other χ2 tests. See Golan (2008) for summary of these tests.

To summarize, we use our proposed iterative IT method to simultaneously choose the best model (a

set of models) and estimate the parameters of these models.

4. SAMPLING EXPERIMENTS

To demonstrate the behavior of our iterative approach, we use different data generating approaches.

The first is simple (call it, “Simple Data”) while the others (“Random Data”) are much more realistic

and consistent with the other studies.
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In our experiments and empirical applications, we also compare our estimator with other information-

theoretic estimators including the Empirical Likelihood (EL), classical Maximum Entropy (ME), and

Ordinary Least Squares (OLS). The linear regression model of Empirical Likelihood (EL) approach can

be written as below,

l(β, θ;Y) = max
p,β

{
N∑
i=1

log(pi)

}

s.t.

N∑
i=1

pixi(Yi −
∑
k

xikβk) = 0

N∑
i=1

pi = 1; pi ≥ 0

(21)

where the N -dimensional p is different from the previous GME method. The classical Maximum

Entropy (ME) optimizes the Shannon entropy function with respect to the same constraints as in the

EL method above. The ME model is

l(β, θ;Y) = max
p,β

{
−

N∑
i=1

pilog(pi)

}

s.t.

N∑
i=1

pixi(Yi −
∑
k

xikβk) = 0

N∑
i=1

pi = 1; pi ≥ 0

(22)

4.1. The Simple Data Generation Process

Let X be the interval-valued explanatory variable while Y be the interval-valued dependent variable.

(1) Suppose that Xm
i is the mth interval of the explanatory variable, X, and Y m

i be the mth

interval of the dependent variable of the ith observation. Assume Xm
i and Y m

i have a linear

relationship:

Y m
i = β1 + β2X

m
i + εi (23)

where the true regression coefficients, β = (2,−3) and the error distribution follows εi ∼

N(0, σ2).

(2) For the ith observation, randomly generate X1
i from uniform(0, 20); X2

i from uniform(21, 40);

X3
i from uniform(41, 60); X4

i from uniform(61, 80); and X5
i from uniform(81, 100).

(3) εi ∼ N(0, σ2), where σ = 2
12



(4) Generate Y m
i according to (23) for m = 1, 2, ...,M and i = 1, 2, ..., N

First, notice that each interval m of Xm
i causes its corresponding m of Y m

i . Second, the intervals

of X is increasing, X1
i < X2

i < ... < X5
i , such that the underlying interval-ordering of Y follows

Y 1
i ≤ Y 2

i ≤ ... ≤ Y 5
i .

Using M = 5 and N = 50, we ran a sampling experiment consisting of 1000 samples. For the GME

estimations, the parameter support space for both β1 and β2 are z = [−500, 250, 0, 250, 500] while the

errors support is vm = [−3σYm , 0, 3σYm ].

In this “Simple Data” experiment, although we observed all 5 intervals of X1
i , ..., X

5
i and Y 1

i , ..., Y
5
i ,

we do not know which interval m of Xm
i causes which interval m of Y m

i for estimation purposes.

First, we assume that there is a “One-to-One” correspondence between an interval m of X and Y,

Y m
i = f(Xm

i ). Results associated with this baseline results for the “Simple Data” experiments are

omitted since it’s essentially the classical (trivial) problem. There are 5 sets of estimated values for

each one of the parameters, β1 and β2, per sample, so the distribution of all 1000 samples is based on

5000 estimated values. As expected, the estimated coefficients are concentrated around the true value

of β1 = 2 and β2 = −3. In a second set of experiments, we relax the assumption of “One-to-One”

correspondence and iterate over all the possible combinations of the intervals. In this combination case,

there are 25 estimated values for each one of the parameters per sample and the complete distribution

is based on 25,000 estimated values.

[Insert Figures 2a - 2d here]

Figures 2a - 2d provide the results for the iterations IT-GME model. The histogram of estimated

coefficients for the intercept, β̂1, is omitted. From Figure 2a, we demonstrate that it is very easy to

identify the correct set of models generating the estimated coefficients of β2 by looking at the two distinct

humps: one with a very small variance concentrated around the true β2 and a much larger variance

of estimated coefficients distributed around zero. The histogram of the objective function value, and

H(p̂, ŵ) versus β̂1 and β̂2, respectively, can clearly distinguish the two humps (Figures 2b, 2c and 2d).

We use the objective value, specified in terms of the total entropy, as our statistics for identifying the

best model.

We note that similar figures and conclusions are derived from analyzing H(p̂) vs. β̂2, and H(ŵ) vs.

β̂2 for all and the top 5% of H(p̂, ŵ), H(p̂), and H(ŵ). However, similar scatter plots for the lowest 5%

of H(p̂, ŵ), H(p̂), and H(ŵ) cannot recover the correct parameters. We present here only the statistic

we discuss earlier- the objective function H(p̂, ŵ). Also omitted is a plot of our objective function vs.

Squared-Errors of β̂2 (SE(β̂2)) that suggests that the models that maximize the objective function are

associated with lower squared-errors.
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These results demonstrate that our statistic - the value of the objective function (total entropy) -

is able to identify the correct model and therefore identify the true sub-distribution of each parameter

within the overall empirical distribution. We are able to simultaneously identify the best underlying

model and infer its parameters.

However, our first set of results is based on a generation process that is simple and unrealistic.

Nevertheless, it is trivial to identify the “correct” model and estimated parameters values with our

proposed method. But it demonstrates the strength of our approach.

Having shown the basic idea via a simple case, we move on to the more realistic case. In the next set

of experiments, we follow on the experimental design of Ahn et. al. (2012). We call the first experiment

“Random 1.”

4.2. The Random Data Generation Process

4.2.1. Case 1

Let X1 be the interval-valued explanatory variable and Y be the interval-valued dependent variable.

We generate our data as follows.

(1) Suppose that Xc
ik is the center of kth explanatory variable, and Y c

i is the center of the dependent

variable of the ith observation. Assume Xc
i1 and Y c

i have a linear relationship:

Y c
i = β1 + β2X

c
i1 + εci (24)

and the regression coefficients, (β1, β2) = (2,−3), and an error distribution that follows εci ∼

N(0, σ2c ) with σc = 1.

(2) For the ith observation, randomly generate Xc
i1 from uniform(0, 100). Generate Y c

i according

to (24) for i = 1, ..., N .

(3) Suppose that Xr
ik is the range (or half-range) of kth explanatory variable, and Y r

i is the range of

the dependent variable of the ith observation. For the ith observation, generate Xr
i1 randomly

from uniform(1, 5); and generate the range Y r
i randomly from uniform(1, 10) for i = 1, ..., N .

(4) Calculate the bounds of the ith observation:

[Xmin
i1 , Xmax

i1 ] = [Xc
i1 −Xr

i1, X
c
i1 +Xr

i1] and [Y min
i , Y max

i ] = [Y c
i − Y r

i , Y
c
i + Y r

i ]

First, notice that the only causality is through the center point for each observation. Second, since

the ranges of X and Y are independently generated from two different uniform distributions, the actual

causality of the intervals is much harder to infer. Different specifications of the ranges, where Y r
i is

a linear function of Xr
i1, and heteroskedastic errors are also considered, but omitted here for brevity.

Contrary to the previous case, we only observed the lower and upper bounds of X and Y, which we

divided into M equally-spaced intervals before the GME method procedure is applied. In all of our
14



experiments, we choose M = 5. As expected, this problem is harder than the previous one. The em-

pirical distributions are more complex and we do not observe the perfect two humps, as in the “Simple

Data” case, where the “correct” and “incorrect” are distinctly separated. There is now an overlapping

of “correct” and “incorrect” β̂2 estimates. The correct subset of models lies within the incorrect one.

Nonetheless, the value of the objective function still provides a good statistic for identifying the true

model and its parameters. We preset these results in Figures 3a - 3d.

[Insert Figures 3a - 3d here]

In Figure 3a (the β̂2’s distribution) it is much harder to distinguish between the “correct” and

“incorrect” sub-distributions. It seems to suggest that there is an overlapping between “correct” and

“incorrect” β̂2 estimates with a much larger variance of estimated coefficients distributed around β2 =

−3. Looking at the empirical distribution of the objective values, there is little concentration at the

top while scatter plots of the objective value versus β̂1 and β̂2, respectively, does not distinguish the

humps (Figures 3b, 3c and 3d). However, the variances of β̂2 decrease slightly at higher levels of

objective values. Scatter plot of objective function vs. Squared-Errors of β̂2 also confirm the merits of

the proposed statistic - lower SE(β̂2) are associated with larger H(p̂, w).

4.2.2. Case 2

In order to investigate the sensitivity of our proposed method across the parameter space, we re-

peated the previous set of experiments but with different values of the true parameters. In this case,

the true parameters are farther away from zero while all support spaces (z) remain as before. We repeat

the data generation processes done in the previous case but with one simple modification: the original

true-parameters are multiplied by 2, 5, 10, and 20, for each set of experiments, respectively. Therefore,

the true parameters are (4, -6), (10, -15), (20, -30) and (40, -60), respectively for (β1, β2), for each one

of the four sets of experiments. The results are shown in Figures 4a - 4d.

[Insert Figures 4a - 4d here]

Figures 4a - 4d provide histograms of the estimated β2 for different values of the parameters. It is

clear that as the parameter value increases, the distributions of the “correct” and “incorrect” models

become clearly distinctive. For example in Figure 4d, with β = (40,−60), it is much easier to identify

the “correct” from “incorrect” sub-distributions.

[Insert Figures 5a - 5d here]
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Figures 5a - 5d provide scatter plots of the objective function and β̂2 that correspond to Figures 4a

- 4d. Again the value of the objective function proved to be the statistic that can identify the best

model leading to estimates with lower risk and variance.

4.2.3. Case 3 - Multiple X’s

We now investigate the performance of our approach with multiple X’s. In that case the basic data

generation process is just a direct extension of the previous case with an additional X. The true β1,

β2, and β3 are 2, -3, and 4, respectively; Xr
1 is randomly generated from U(1, 5) and Xr

2 from U(2, 3);

and Yr from U(1, 10). The estimation uses only the first 50 (N/2) observations while predictions and

performance evaluations use the second 50 observation. The estimated coefficients of β2 and β3 are

nicely distributed around the true values of -3 and 4, respectively. The results are qualitatively similar

to the previous case. We summarize it in Table 1. In this case, we compare our approach with its

competitors. These competitors include the other methods used for interval estimation as well as other

estimators for the linear model within the iterative approach we propose here.

[Insert Table 1 here]

Table 1 provides results from the proposed iterative IT-GME approach for this experiment, as well as

other information-theoretic estimators such as Empirical Likelihood (EL), classical Maximum Entropy

(ME), see (21) & (22); iterative Ordinary Least Squares (OLS); and the existing methods such as Center

Method (CM), Center and Range Method (CRM), Constrained Center and Range Method (CCRM),

and Min and Max Method (using R’s iRegression package). The estimators for the CM and CRM

are given (6) and (9) while the Min/Max is just running a separate regression for the minimum and

maximum bounds of the variables. The CCRM imposes a positive constraint on the range coefficients

of the CRM model. The estimated coefficients, Standard Errors, Mean Square Errors, out-of-sample

Root Mean Squared Errors (ORMSE), and out-of-sample Mean Absolute Errors (OMAE) are average

over the 1000 samples. The generic RMSEs and MAEs are specified as the differences between the

predicted values [Ŷ L
i , Ŷ

U
i ] and the observed values [Y L

i , Y
U
i ] (see Lima Neto et. al. (2008)):

RMSE.m =

√√√√∑N
i=1(Y

m
i − Ŷ m

i )2

N
& MAE.m =

∑N
i=1|Y m

i − Ŷ m
i |

N
, m = L,U (25)

and the predicted values are calculated as in other methods discussed: (8) for CM, (11) for CRM, and

Min/Max is given as

Ŷm = xm0 β̂
m, m = L,U (26)

The column name maxObj selects the model that maximizes the objective function or total en-

tropies over iterative models. That is, β̂∗kt = {β̂kt|Htj(p̂, ŵ) = H∗t (p̂, ŵ)} where t = 1, ..., T samples,
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j = 1, ..., J iterations, H∗t (p̂, ŵ) = max{Ht1(p̂, ŵ), Ht2(p̂, ŵ), ...,HtJ(p̂, ŵ)} of sample t and Htj(p̂, ŵ)

is the objective value of tth sample and jth iteration. Here we are choosing the best model, hence

maxObj, for each sample. For the iterative OLS, minObj is used as a criteria since the best (or most

probable) model minimizes the least-square errors (objective value). The first 50 observations are used

to estimate the parameters while the second 50 observations are used for prediction. Results presented

in Table 1 are out-of-sample averages over T = 1000 samples, where their corresponding in-sample

definitions as provided below:

bk =

T∑
t=1

β̂ekt

T
, for β̂ekt = β̂∗kt, β̂

C
kt, β̂

R
kt, β̂

L
kt, β̂

U
kt

obj =

T∑
t=1

H∗t (p̂, ŵ)

T

RMSE.u =

T∑
t=1

RMSE.ut

T

MAE.u =

T∑
t=1

MAE.ut

T

numIn =
1

T ×N
∑
t,n

1(Ŷ L < Y C&Y C < Ŷ U )

numHCov =
1

T ×N
∑
t,n

1(Y U < Ŷ U )

StdErr(bk) =

T∑
t=1

SE(β̂ekt)

T
, for β̂ekt = β̂∗kt, β̂

C
kt, β̂

R
kt, β̂

L
kt, β̂

U
kt

MSE(bk) =

T∑
t=1

(β̂ekt − βk)2

T
, for β̂ekt = β̂∗kt, β̂

C
kt, β̂

R
kt, β̂

L
kt, β̂

U
kt

RMSE.l =

T∑
t=1

RMSE.lt

T

MAE.l =

T∑
t=1

MAE.lt

T

numCov =
1

T ×N
∑
t,n

1(Ŷ L < Y L&Y U < Ŷ U )

numLCov =
1

T ×N
∑
t,n

1(Ŷ L < Y L)

numOverLap =
1

T ×N
∑
t,n

|min(Ŷ U , Y U )−max(Ŷ L, Y L)|

|max(Ŷ U , Y U )−min(Ŷ L, Y L)|

(27)

On average, the model with maximum objective value, maxObj or max(H(p̂, ŵ)), estimated via

GME, EL, and ME and least-square errors for iterative OLS produce consistent estimates of β2 and

β3. Also, the estimated coefficients of β2 and β3 for the center, minimum, and maximum points are

very close to the true value of -3 and 4. Overall, both CRM and CCRM produce the lowest ORMSE,

OMAE, and perform the best in terms of all the new coverage statistics such as OnumIn, OnumCov,

OnumHCov, OnumLCov, and OnumOverLap for both upper and lower intervals. Among the iterative

information-theoretic estimators and iterative OLS, the iterative IT-GME performs the best in terms

of all the statistics provided. It is also comparable with CM and slightly worse off than the MinMax

on the new coverage statistics while its ORMSE and OMAE are smaller.

Given that the true data generation process follows the center points and their respective ranges,

the existing CM, CRM, CCRM, and MinMax are the correct model by design while all the iterative
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procedures are agnostics about the true underlying model. Even with such minimal assumption, the

iterative estimators performed well in identifying the true or most probable model with the proposed

criteria - maximum of the objective value and minimum for iterative OLS. It is worth noting that the

CRM, CCRM, and MinMax require estimating two sets of parameters - coefficients for center and range

or lower and upper. Since the proposed procedures require iteratively fitting all the possible models, it

is natural to obtain and make use of the empirical distribution of the intercepts. One way is to modify

the predicted intervals of lower and upper bounds. Among others, using the minimum and maximum

of the empirical distribution of the intercepts, we can shift the predicted lines down for the lower and

up for the upper bounds, respectively, while keeping the slope parameters chosen by maxObj. Let’s

call this criteria maxObjI. Then, the predicted lower and upper bounds are:

Ŷ m = xm0 β̂
m∗
j ,m = L,U (28)

where β̂L∗j = [min(β̂1j), β̂
∗
2j , β̂

∗
3j , ..., β̂

∗
Kj ] and β̂U∗j = [max(β̂1j), β̂

∗
2j , β̂

∗
3j , ..., β̂

∗
Kj ].

The results from the above intercept modifications greatly improve the coverage statistics. Among

the iterative IT estimators and iterative OLS, the iterative IT-GME still preformes the best. Comparing

with the existing methods, the iterative IT-GME out-performs them in terms of the coverage statistics,

except for out-of-sample overlapping areas between observed and predicted intervals, while it under-

performs in terms of the ORMSEs and OMAEs. Since we shift the lower and upper bounds to the

extreme via using the minimum and maximum of the intercepts, β̂1, it is the most conservative lower

and upper predictions one can make (over-coverage), hence the low overlapping areas and ORMSEs.

4.2.4. Case 4 - Cauchy Distribution

Since the errors and ranges from previous data generations were drawn from normal distributions,

the center point is a good measure of centrality. However, that is not the norm in real applications,

rather an exception. We now repeat Case 3, but now, the errors and ranges are randomly drawn from

a Cauchy distribution: ec ∼ Cauchy(0, 2); Xr
1, Xr

2 ∼ Cauchy(2.5, 2); and Yr ∼ Cauchy(5, 2). Our

results are presented in Table 2.

[Insert Table 2 here]

On average, the model with maximum objective value, maxObj, for iterative OLS and IT estimators

still produces the best estimates of β2 and β3. The existing methods also produce good estimates, except

for the MinMax method with slope-parameters averages of [-2.26, 3.08] and [-2.29,3.04] for lower and

upper bounds, respectively. Unlike the results from “Random Data 3”, both CRM and CCRM no

longer perform the best in all of the new coverage statistics. The iterative IT-GME out-performs CRM

and CCRM in three out-of-sample coverage measures: percentages of complete coverage (OnumCov),
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upper-bound coverage (OnumHCov), and lower-bound coverage (OnumLCov). The iterative IT-GME

also out-performs MinMax and other iterative IT estimators on the majority of performance measures,

except for ORMSEs and overlapping areas, while its performance is comparable with both iterative

OLS and CM.

In the intercept modifications, the iterative IT-GME still out-performs other iterative IT estimators

on the majority of measures, except for ORMSEs, while it is comparable with the iterative OLS. Com-

paring with the existing methods, the iterative IT-GME still out-performs them on coverage statistics,

except for overlapping areas, while it under-performs on ORMSEs and OMAEs. We note that results

from small sample versions of previous random data with small and large noises as well as correlations

are largely the same with results presented here in this section.

4.3. Mixed Models

All the experiments presented above assume that both the upper and lower bounds are coming from

the same underlying model (process). To relax such assumption, we generate a “Mixed Models Data”

in which there exist two “correct” sub-samples within the data: one for the lower bounds and another

for the upper bounds.

Y min
i = (−β1) + (−β2)Xmin

i1 + (−β3)Xmin
i2 + εi

Y max
i = β1 + β2X

max
i1 + β3X

max
i2 + εi

(29)

where the true β1, β2, and β3 are 2, -3, and 4, respectively; for the ith observation, εi ∼ N(0, 1);

randomly generate Xc
ik from U(0, 100), Xr

i1 from U(1, 5), Xr
i2 from U(2, 3), and [Xmin

ik , Xmax
ik ] =

[Xc
ik − Xr

ik, X
c
ik + Xr

ik] for k = 1, 2. That is, the true parameters are -β for Y min
i and β for Y max

i ;

and MinMax method is the correct model for this data generation process. We present the results in

Figures 6a - 6d.

[Insert Figures 6a - 6d here]

Figures 6a and 6c provide scatter plots of H(p̂, ŵ) and β̂2 and β̂3, respectively, for all 125000 es-

timated models. There are five distinct concentrations of β̂2 and β̂3 that are symmetric and center

around 0. When looking at the same scatter plots for estimated parameters with maximum objective

values (H∗(p̂, ŵ)) in 6b and 6d, the estimated values of β2 and β3 are concentrated only on -3 or 3 and

-4 or 4. Such distinct distributions allow us to separate the two underlying sub-samples: estimated

coefficients associated with β and −β within each sample. That is, for each sample, we pick two sets

(−β̂, β̂) of estimated coefficients with maximum objective values (H∗(p̂, ŵ)). We present the different
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statistics of this experiment in Table 3.

[Insert Table 3 here]

Table 3 provides comparison of results for the “Mixed Models Data”. For all the iterative IT esti-

mators and iterative OLS, we can distinguish the two sub-distributions: bkn for −β or lower bounds

and bk for β or upper bounds. On average, iterative IT-GME performs the best among iterative IT

estimators. It is comparable with iterative OLS and the “correct” model of MinMax methods on all

measures. CM, CRM, and CCRM peform worse in recovering the correct parameters or identifying the

two sub-samples, while they do fine with complete coverage, upper-bound coverage, and lower-coverage

measures.

4.4. Multi-Mixed Models

To generalize the above “Mixed Models Data”, we generate a “Multi-Mixed Data” in which there

exist five “correct” sub-samples within the data: one for the lower bounds, another for the upper

bounds, and three distinct models between the extreme bounds. That is,

Y m
i = (βm1 ) + (βm2 )Xm

i1 + εi (30)

where the true (βm1 , βm2 ) pairs are (−2,−6), (−1,−3), (0, 2), (1, 3), and (2, 6) for each m = 1, ..., 5, re-

spectively; for the ith observation, εi ∼ N(0, 25); randomly generate each Xm
i1 from U(0, 20), U(21, 40),

U(41, 60), U(61, 80), and U(81, 100). MinMax method no longer captures the whole correct models for

this data generation process. We present the results in Figures 7a and 7b.

[Insert Figures 7a and 7b here]

Figure 7a provides scatter plots of H(p̂, ŵ) and β̂2, for all 25000 estimated models. There are five

distinct concentrations of β̂2 around the true β2 values, as well as four other “incorrect” concentrations.

When looking at the same scatter plots for estimated parameters with maximum objective values

(H∗(p̂, ŵ)) in 7b, the estimated values of β2 are concentrated only on -6, -3, 2, 3, and 6. Such distinct

distributions allow us to separate the two underlying sub-samples: estimated coefficients associated

with each βm within each sample. That is, for each sample, we pick five sets (β̂m,m = 1, ..., 5) of

estimated coefficients with maximum objective values (H∗(p̂, ŵ)).

For all the iterative IT estimators and iterative OLS, we can distinguish the five sub-distributions

corresponding all five correct models. On average, iterative IT-GME performs the best among iterative

IT estimators. It is comparable with iterative OLS on all measures while the MinMax method can
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captures only two of the five correct models. CM, CRM, and CCRM peform worse in recovering the

correct parameters or identifying the five sub-samples.

5. EMPIRICAL EXAMPLES

In this section, we analyze two empirical examples using the iterative IT Generalized Maximum

Entropy (GME) estimator and other competing approaches. The data are obtained from Billard and

Diday (2012).

5.1. Cholesterol Data

Gillard and Diday (2012) provides interval-valued observations for an independent variable X = Age

and two dependent random variables Y1=Cholesterol and Y2=Weight for a certain population. There

are seven of such interval-valued observations.

The parameter and error supports specifications for the proposed iterative IT GME estimator are

as follows. For β1 and β2, the supports are z = [−500,−250, 0, 250, 500]. The error supports are set to

be symmetric around zero, vm = [−3× σYmc , 0, 3× σYmc ] for each sub-mth interval, where Y mc is the

center points of sub-interval Y m. So, they are the empirical standard deviation of the center points

of the dependent variable’s sub-intervals, not the end-points. The intuition is that since the minimum

bounds of each sub-interval would potentially be different from the centers of those sub-intervals, the

centers of sub-intervals would capture more accurately the true variances of the intervals. Our results

are robust to changes in the end points of the z supports.

[Insert Table 4 here]

Table 4 provides results from iterative IT estimators, iterative OLS, CM, CRM, CCRM, and Min/Max

Method, where Cholesterol as a dependent variable and Age as a single predictor. Since there is no

variations in the Age interval across observations, we cannot use the ranges of Age. Therefore,the lower

bound of Age is used instead for CRM and CCRM. That is, the ranges of Cholesterol is regressed

against Age-Low. The estimated coefficients across different methods are statistically significant and

consistent in terms of the signs and magnitudes. Overall, CRM, CCRM, and MinMax perform the best

in terms of RMSEs, MAEs, and coverage statistics. The iterative IT-GME performs similarly with

(or marginally better than) iterative OLS and CM on all measures of fitness. For other iterative IT

estimators, RMSEs and MAEs for the lower-bound prediction are similar to the existing methods while

the upper-bound predictions are generally worse.
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5.2. Blood Pressure Data

We use data provided by Billard and Diday (2012) that have interval-valued observations for a

dependent variable Y = Pulse Rate and two independent random variables X1=Systolic Pressure and

X2=Diastolic Pressure for a certain population. Billard and Diday (2012) provide more information

about the data. Xu (2010) discussed the need to apply interval-valued data rules such as Diastolic

Pressure must be less than Systolic Pressure. Therefore, the data used here is the same as in Xu (2010)

where there are 11 of such interval-valued observations.

The parameter and error support specifications for the proposed iterative IT GME estimator for

this data are: z = [−500,−250, 0, 250, 500]. The results are robust to choices in the end points of z

supports. The errors supports are derived as before and symmetric around zero.

[Insert Table 5 here]

Table 5 provide results using iterative IT estimators, iterative OLS, and existing methods such as

CM, CRM, CCRM and Min/Max. The estimated coefficients are similar in terms of the signs and

magnitude. However, only Systolic Pressure seems to be statistically significant across the different

methods.

6. CONCLUSION

In this paper, we proposed an iterative Information-Theoretic (IT) method for fitting a linear regres-

sion model for interval-valued data. Since there could be infinitely many models that are consistent with

the observed interval-valued data, the proposed method identifies the most probable (causal) model

that is consistent with the observed information. The estimation method we use is an information-

theoretic GME estimator. The iteration process searches through a finite set of possible models within

the observed data. To identify the best model we use an entropy criterion. Our approach allows us

to relax distributional assumptions of within the interval behavior, as well as those of the underlying

statistical process, and fully utilize all observed information that captures internal variations in the

interval-valued observations. We provided numerous sampling experiments, robustness and sensitivity

analyses as well as empirical analyses of different data sets. We also contrasted our results with those

of competing models.

22



Figure 1. The Proposed iterative IT-GME approach is to iterate through all possible
combination of sub-intervals within the interval-valued random variables X and Y. For
M = 5 and K = 1, we iterate through 25 models since we have 25 sub-interval pairs of X
and Y, including (X1

1 , Y
1), (X1

1 , Y
2),..., (X1

1 , Y
5), (X2

1 , Y
1), (X2

1 , Y
2),...,(X5

1 , Y
5). For

M = 5 and K = 2, it requires 125 iterations since the number of all possible combination
is M ×MK .
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(a) (b)

(c) (d)

Figure 2. Results from 1000 samples of “Simple Data” with N = 50, z =
(−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ). Subfigures (a) and (b) show histograms

of β̂2 and H(p̂, ŵ); (c) and (d) show scatter plots of H(p̂, ŵ) vs. β̂1 and β̂2, respectively.
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(a) (b)

(c) (d)

Figure 3. Results from 1000 samples of “Random Data 1” with N = 50, z =
(−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ). Subfigures (a) and (b) show histograms

of β̂2 and H(p̂, ŵ); (c) and (d) show scatter plots of H(p̂, ŵ) vs. β̂1 and β̂2, respectively.
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(a) (b)

(c) (d)

Figure 4. Results from 1000 samples of “Random Data 2” with different true-
parameters: (a) β = 2 × [2,−3]′, (b) β = 5 × [2,−3]′, (c) β = 10 × [2,−3]′, and
(d) β = 20× [2,−3]′; and N = 50, z = (−500, 250, 0, 250, 500), and v = (−3σ̂Y , 0, 3σ̂Y ).

Subfigures (a), (b),(c) and (d) show histograms of β̂2 for samples with 2×β, 5×β, 10×β,
and 20×β, respectively.
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(a) (b)

(c) (d)

Figure 5. Results from 1000 samples of “Random Data 2” with different true-
parameters: (a) β = 2 × [2,−3]′, (b) β = 5 × [2,−3]′, (c) β = 10 × [2,−3]′, and
(d) β = 20× [2,−3]′; and N = 50, z = (−500, 250, 0, 250, 500), and v = (−3σ̂Y , 0, 3σ̂Y ).

Subfigures (a), (b),(c) and (d) show scatter plots of H(p̂, ŵ) vs. β̂2 for samples with
2×β, 5×β, 10×β, and 20×β, respectively.
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(a) (b)

(c) (d)

Figure 6. Results from 1000 samples of “Mixed Models Data” for the iterative GME
model with z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ). Subfigures (a) and (c)

show scatter plots of H(p̂, ŵ) vs. β̂2 and β̂3, respectively; and (b) and (d) show scatter

plots of H∗(p̂, ŵ) vs. β̂2 and β̂3, respectively.
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(a) (b)

Figure 7. Results from 1000 samples of “Multi-Models Data” for the iterative GME
model with z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ). Subfigures (a) shows

scatter plot of H(p̂, ŵ) vs. β̂2 and (b) shows scatter plot of H∗(p̂, ŵ) vs. β̂2.
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Table 1. Random Data 3 - Multiple X’s (T=1000): Results from iterative IT, OLS,
and existing methods

iGME iEL iME iOLS CM CRM CCRM MinMax

maxObj maxObj maxObj minObj Est.C Est.C Est.C Est.L

b1 1.6966 -0.5795 -2.8436 2.0128 1.9906 1.9906 1.9906 -2.7078
b2 -2.9974 -2.9970 -2.9950 -2.9997 -2.9997 -2.9997 -2.9997 -2.9950
b3 4.0018 4.0000 3.9990 3.9996 3.9996 3.9996 3.9996 3.9989

StdErr(b1) 0.3720 0.0420 0.4532 0.3854 0.3817 0.3817 0.3817 1.6596
StdErr(b2) 0.0049 0.0056 0.0608 0.0050 0.0050 0.0050 0.0050 0.0227
StdErr(b3) 0.0049 0.0055 0.0605 0.0051 0.0050 0.0050 0.0050 0.0229

Est.R Est.R Est.R Est.U

b1 - - - - - 11.1920 7.9046 6.2708
b2 - - - - - -0.0148 0.1194 -2.9953
b3 - - - - - -0.0154 0.4814 3.9996

StdErr(b1) - - - - - 6.8597 6.9394 1.8260
StdErr(b2) - - - - - 0.3262 0.3300 0.0227
StdErr(b3) - - - - - 1.3052 1.3203 0.0229

obj 59.7586 0.0296 3.9120 1.1101 - - - -
ORMSE.l 4.1105 3.8250 4.3305 4.2246 4.1254 2.8680 2.8438 4.5154
ORMSE.u 4.1831 5.9863 7.8051 4.2088 4.1314 2.8545 2.8288 4.7076

OMAE.l 3.3588 3.1416 3.5486 3.4705 3.3714 2.4216 2.4068 3.7051
OMAE.u 3.4317 5.1596 7.0142 3.4592 3.3831 2.4117 2.3953 3.8501

MSE(b1/c/l) 0.3251 9.7618 26.3107 1.2212 0.1493 0.1493 0.1493 25.0772
MSE(b2/c/l) 0.0000 0.0003 0.0006 0.0000 0.0000 0.0000 0.0000 0.0006
MSE(b3/c/l) 0.0000 0.0003 0.0006 0.0000 0.0000 0.0000 0.0000 0.0006

MSE(b1u) - - - - - - - 21.4991
MSE(b2u) - - - - - - - 0.0005
MSE(b3u) - - - - - - - 0.0005

N 100 100 100 100 100 100 100 100
OnumIn 0.8583 0.5757 0.2922 0.8357 0.8628 1.0000 1.0000 0.8707

OnumCov 0.1853 0.0931 0.0294 0.1798 0.1868 0.4141 0.4130 0.4348
OnumHCov 0.2563 0.1099 0.0296 0.2694 0.2618 0.5036 0.5022 0.5018
OnumLCov 0.2710 0.5138 0.7216 0.2676 0.2633 0.5064 0.5053 0.5073

OnumOverLap 0.4558 0.3662 0.2702 0.4489 0.4577 0.6381 0.6397 0.4857

Results from 1000 samples of “Random Data 3 - Multiple X’s” for iterative information-
theoretic (IT) estimators, iterative Ordinary Least Squares (iOLS), and existing meth-
ods. The first 50 observations (N/2) are used for estimation and the second-half are
utilized for prediction. The estimated coefficients; Standard Errors; Mean Square Er-
rors; and out-of-sample Root Mean Squared Errors (ORMSE), Mean Absolute Errors
(OMAE), and coverage statistics are averaged over the 1000 samples. The iterative
IT-GME uses z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ).
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Table 2. Random Data 4 - Cauchy Distribution (T=1000): Results from iterative IT,
OLS, and existing methods

iGME iEL iME iOLS CM CRM CCRM MinMax

maxObj maxObj maxObj minObj Est.C Est.C Est.C Est.L

b1 1.1293 8.1065 4.1413 1.7283 1.7267 1.7267 1.7267 6.4063
b2 -2.9862 -2.4345 -2.2569 -2.9994 -2.9996 -2.9996 -2.9996 -2.2570
b3 4.0080 3.2782 3.1171 4.0056 4.0063 4.0063 4.0063 3.0767

StdErr(b1) 8.5724 0.7777 6.3383 8.6889 8.7448 8.7448 8.7448 23.7561
StdErr(b2) 0.1122 0.1141 0.9808 0.1138 0.1147 0.1147 0.1147 0.3293
StdErr(b3) 0.1120 0.1275 1.0529 0.1136 0.1144 0.1144 0.1144 0.3150

Est.R Est.R Est.R Est.U

b1 - - - - - 19.4388 17.1238 19.4813
b2 - - - - - 0.0042 0.1002 -2.2915
b3 - - - - - -0.0643 0.0915 3.0433

StdErr(b1) - - - - - 8.4814 8.5241 29.2028
StdErr(b2) - - - - - 0.3594 0.3613 0.3272
StdErr(b3) - - - - - 0.3675 0.3701 0.3145

obj 59.5655 0.2140 3.9120 1.73E+07 - - - -
ORMSE.l 431.8441 356.9115 343.0341 430.1148 430.1033 140.8712 135.3134 354.5416
ORMSE.u 432.1196 356.9037 341.8422 430.2478 430.2468 140.8954 135.2343 357.3542

OMAE.l 90.4475 94.8480 96.4670 88.7617 88.2033 32.0808 30.6785 97.7056
OMAE.u 90.4922 94.6514 95.2497 88.7384 88.1963 32.2018 30.6638 99.3937

MSE(b1/c/l) 773.203 7.2E+03 6.9E+03 182.803 138.742 138.742 138.742 6.9E+03
MSE(b2/c/l) 0.2509 1.1947 1.5853 0.0299 0.0289 0.0289 0.0289 1.5898
MSE(b3/c/l) 0.1152 1.9114 2.2714 0.0277 0.0250 0.0250 0.0250 2.4134

MSE(b1u) - - - - - - - 9.9E+03
MSE(b2u) - - - - - - - 1.6029
MSE(b3u) - - - - - - - 2.4634

N 100 100 100 100 100 100 100 100
OnumIn 0.6341 0.3385 0.2832 0.6400 0.6633 0.6799 0.6947 0.2587

OnumCov 0.4095 0.2267 0.1921 0.4116 0.4261 0.3160 0.3206 0.1876
OnumHCov 0.6270 0.5523 0.5209 0.6302 0.6318 0.5958 0.6056 0.5035
OnumLCov 0.6239 0.6018 0.6119 0.6232 0.6260 0.6003 0.6009 0.6055

OnumOverLap 0.3140 0.3805 0.3975 0.3069 0.3106 0.4071 0.4092 0.4371

Results from 1000 samples of “Random Data 4 - Cauchy Distribution” for iterative
information-theoretic (IT) estimators, iterative Ordinary Least Squares (iOLS), and
existing methods. The first 50 observations (N/2) are used for estimation and the
second-half are utilized for prediction. The estimated coefficients; Standard Errors;
Mean Square Errors; and out-of-sample Root Mean Squared Errors (ORMSE), Mean
Absolute Errors (OMAE), and coverage statistics are averaged over the 1000 samples.
The iterative IT-GME uses z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ).
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Table 3. Mixed Models Data (T=1000): Results from iterative IT, OLS, and existing
methods

iGME iEL iME iOLS CM CRM CCRM MinMax

maxObj maxObj maxObj minObj Est.C Est.C Est.C Est.L

b1n/c/l -1.8430 -0.0365 0.1159 -1.8917 0.9634 0.9634 0.9634 -2.0052
b2n/c/l 2.9998 1.5133 0.9064 3.0000 0.0005 0.0005 0.0005 3.0000
b3n/c/l -4.0010 -2.0182 -1.2088 -3.9999 0.0004 0.0004 0.0004 -3.9999

StdErr(b1n/c/l) 0.3927 0.0579 0.4518 0.4092 1.6129 1.6129 1.6129 0.4050
StdErr(b2n/c/l) 0.0056 0.0081 0.0635 0.0059 0.0223 0.0223 0.0223 0.0058
StdErr(b3n/c/l) 0.0065 0.0067 0.0525 0.0068 0.0259 0.0259 0.0259 0.0067

Est.R Est.R Est.R Est.U

b1/r/u 1.8930 1.0462 2.3674 2.1028 - 277.0595 177.0981 1.9950
b2 /r/u -2.9998 -2.2729 -3.0000 -3.0001 - -0.1308 4.4624 -3.0000
b3 /r/u 4.0013 3.0300 3.9999 4.0001 - 1.5484 16.0689 4.0001

StdErr(b1/r/c) 0.4221 0.0348 0.0917 0.4396 - 249.7190 252.4322 0.4354
StdErr(b2/r/u) 0.0056 0.0050 0.0128 0.0059 - 11.8550 11.9834 0.0058
StdErr(b3/r/u) 0.0065 0.0041 0.0106 0.0068 - 47.5491 48.0667 0.0067

objn 59.7581 0.0377 3.9120 1.0581 - - - -
obj 59.1008 0.0267 3.9120 1.0574 - - - -

RMSE.L 1.0233 84.7854 117.8113 1.3904 170.1424 91.6257 92.4881 0.9576
RMSE.U 4.6535 43.0419 1.2683 1.6837 170.1427 91.6255 92.7471 0.9576
MAE.L 0.8352 70.7774 98.2036 1.1470 141.9623 76.3258 77.2664 0.7678
MAE.U 3.8142 36.1484 1.0841 1.3868 141.9658 76.3316 77.4477 0.7679

MSE(b1n/c/l) 0.5342 6.3724 10.4829 0.7574 3.7780 3.7780 3.7780 0.1809
MSE(b2n/c/l) 0.0000 2.9889 4.8966 0.0000 9.0035 9.0035 9.0035 0.0000
MSE(b3n/c/l) 0.0001 5.3239 8.6960 0.0001 15.9978 15.9978 15.9978 0.0001

MSE(b1/u) 0.1987 2.8612 1.9436 0.7592 - - - 0.2088
MSE(b2/u) 0.0000 1.3908 0.0000 0.0000 - - - 0.0000
MSE(b3/u) 0.0000 2.4746 0.0000 0.0001 - - - 0.0001

N 50 50 50 50 50 50 50 50
numIn 0.9873 0.8710 0.7982 0.9951 0.0101 1.0000 1.0000 0.9984

numCov 0.0066 0.0056 0.0030 0.0031 0.0000 0.5342 0.5373 0.0032
numHCov 0.4898 0.2722 0.5384 0.5097 0.0056 0.5467 0.5487 0.4994
numLCov 0.4875 0.0461 0.0059 0.4884 0.0047 0.5456 0.5480 0.5006

numOverLap 0.9726 0.6127 0.6419 0.9795 0.0043 0.5782 0.5750 0.9838

Results from 1000 samples of “Mixed Models Data” for iterative information-theoretic
(IT) estimators, iterative Ordinary Least Squares (iOLS), and existing methods. For
all iterative IT estimators and iOLS, two models are chosen within each sample: the
highest entropy (objective) values for sets of β and −β, respectively. The estimated
coefficients; Standard Errors; Mean Square Errors; and in-sample Root Mean Squared
Errors (RMSE) and Mean Absolute Errors (MAE); and coverage statistics are averaged
over the 1000 samples. The iterative IT-GME uses z = (−500, 250, 0, 250, 500) and
v = (−3σ̂Y , 0, 3σ̂Y ).

32



Table 4. Cholesterol Data: Results from iterative IT and existing methods

iGME iEL iME iOLS CM CRM CCRM MinMax

maxObj maxObj maxObj minObj Est.C Est.C Est.C Est.L

b1 116.1925 96.1071 96.1071 128.4643 124.0536 124.0536 124.0536 96.1071
b2 0.9341 0.6607 0.6607 0.8821 0.8821 0.8821 0.8821 0.6607

StdErr(b1) 8.7251 0.4476 1.1842 9.8120 9.5375 9.5375 9.5375 10.1621
StdErr(b2) 0.1380 0.0585 0.1548 0.1822 0.1630 0.1630 0.1630 0.1887

Est.R Est.R Est.R Est.U

b1 - - - - - 64.7143 64.7143 149.7857
b2 - - - - - 0.4429 0.4429 1.1036

StdErr(b1) - - - - - 10.3956 10.3956 12.0234
StdErr(b2) - - - - - 0.1930 0.1930 0.1901

N 7 7 7 7 7 7 7 7

Results from “Cholesterol Data” for iterative information-theoretic (IT) estimators, it-
erative Ordinary Least Squares (iOLS), and existing methods. For all iterative IT esti-
mators and iOLS, we choose the model with the highest entropy (objective) values. The
iterative IT-GME uses z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ).

Table 5. Blood Pressure Data: Results from iterative IT and existing methods

iGME iEL iME iOLS CM CRM CCRM MinMax

maxObj maxObj maxObj minObj Est.C Est.C Est.C Est.L

b1 16.6215 22.5767 22.5767 16.7927 21.1708 21.1708 21.1708 22.5766
b2 0.3187 0.2654 0.2654 0.3203 0.3289 0.3289 0.3289 0.2654
b3 0.2098 0.1953 0.1953 0.2062 0.1699 0.1699 0.1699 0.1953

StdErr(b1) 15.6136 0.2344 0.7774 19.6352 18.4290 18.4290 18.4290 23.6213
StdErr(b2) 0.0877 0.0234 0.0776 0.1103 0.1074 0.1074 0.1074 0.1579
StdErr(b3) 0.1115 0.0258 0.0856 0.1402 0.1327 0.1327 0.1327 0.1626

Est.R Est.R Est.R Est.U

b1 - - - - - 20.2149 17.9556 34.0810
b2 - - - - - -0.1467 0.0000 0.3062
b3 - - - - - 0.3480 0.2072 0.1089

StdErr(b1) - - - - - 9.5907 9.8768 21.0029
StdErr(b2) - - - - - 0.2107 0.2170 0.1089
StdErr(b3) - - - - - 0.4431 0.4563 0.1658

N 11 11 11 11 11 11 11 11

Results from “Blood Pressure Data” for iterative information-theoretic (IT) estimators,
iterative Ordinary Least Squares (iOLS), and existing methods. For all iterative IT
estimators and iOLS, we choose the model with the highest entropy (objective) values.
The iterative IT-GME uses z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ).

33


